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Abstract  -  Time  series  analysis  and 
prediction  has  been  treated  as  a  regression 
problem,  specially  in  the  field  of 
Econometrics.  In  order  to  fit  a  regression 
model,  the  financial  time  series  must  be 
converted from a non-stationary process into 
a stationary process. We believe this method 
removes important data relationships and we 
propose a method for time series analysis and 
prediction  using  a  classification  algorithm  
(Support  Vector  Machine)  and a new set  of 
time series  features.  We evaluate  this  model 
using  the  Bovespa  Index  Futures  Contract 
(Ibovespa  Futuro),  by  making  short-term 
predictions in a simulated environment.
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I. INTRODUCTION
Time series, including those of financial data, 
are  regarded  to  have  as  features:  Trend, 
Seasonality, Cycles and Serial Dependence. In 
order to make predictions about time series in 
the  future,  practitioners  rely  mostly  on 
regression models, and it's a requirement that 
some features must be transformed to fit those 
models.

In particular, the Trend feature must be 
removed,  and  the  "de-trended"  time  series  is 
now converted from a non-stationary process 
into a stationary one.  This method is  applied 
because  regression  modeling  would  lead  to 
spurious  correlations  and  predictions,  if  the 
time series would have Trends.

However,  we  believe  that  time  series 
contains  numerous  intrinsic  and  non-linear 
relationships, and to remove any of it's features 

a priori, in order to fit the model requirements, 
would lead to a data loss which would make 
difficult if not impossible to make accurate and 
useful predictions.

In  this  work,  we  propose  a  different 
way  to  model,  analyze  and  predict  financial 
time  series,  using  it's  raw  inputs  and  not 
removing any features a priori. To achieve this 
prediction task, we propose new features which 
capture  spatial  price relationships,  and use a 
classification  algorithm,  Support  Vector 
Machine,  to  learn  non-linear  relationships  in 
the data and to make predictions.

The  remainder  of  this  paper  is 
structured  as  follows:  Section  II  reviews 
related work, i.e.,  cases in which the Support 
Vector  Machine  algorithm  was  applied  to 
classify  and  predict  financial  time  series. 
Section  III  deals  with  the  implementation  of 
our intuition in a classification model. Section 
IV evaluates the findings and results. Section V 
is dedicated to Conclusion and future work.

II. RELATED WORK
We have encountered few reports  of  Support 
Vector  Machines  in  the  field  of  financial 
trading.  The  granularity  of  the  datasets  were 
daily data points (daily close prices) in every 
case.  The  markets  covered  by  these  studies 
were stocks and index futures contracts  from 
the U.S.  market,  the  German market  and the 
French market. 

III. IMPLEMENTATION
In order to assess the meaning and the merit of 
our model, we should understand the intuition 
behind it.  After that,  we will demonstrate the 



feature  engineering  and  the  classification 
algorithm.

A. Intuition
The financial time series of securities or futures 
contract  prices  are  an  output  (or  result)  of  a 
decision-making  process  carried  out  by 
investors, which make the decisions to buy, sell 
or do nothing, during a continuous auction  at 
the Stock or Futures Exchange trading session. 

So, the first element of our intuition is 
that prices are not "entities" or "elements", nor  
some "random phenomena", disconnected from 
real  world  decision  making  and  financial 
consequences. Prices are real representations of 
decision  processes  that  account  for  massive 
capital allocation.

In a financial times series, prices are a 
human-driven  phenomena,  and  therefore,  any 
analysis of price series should account for the 
behavior  (or  psychology)  of  the  decision-
makers (investors). How do we do that?

When deciding whether to buy, sell or 
do  nothing  when  it  comes  to  a  security  or 
futures contract,  investors usually rely on the 
prices  themselves  and  apply  to  those  prices 
whatever  proprietary  modeling  they  have  at 
their disposal, in order to assess the viability of 
a trading decision to buy or sell.

In other hand, the practitioners of time 
series  modeling  and  prediction  (usually 
Econometricians) argue that time series as they 
are (with Trend, Seasonality, and other inherent 
features) are unfeasible to model. They propose 
various transformations, in order to fit the data 
into their regression-driven models.

The investor,  however, rarely (if  ever) 
de-trends  a price series, and therefore doesn't 
transform  it  in  a  stationary  process  before 
analyzing it and taking action (to buy or sell). 
They take price at face value, and analyze it by 
measuring it's  path (uptrend, downtrend),  and 
it's relative position in an specific time window.

As every investor  has it's  preferences, 
biases and trading models, it's not in the scope 
of this work to generalize a prediction model 
that would explain all price behavior. Instead, 
we  are  trying  to  model  the  investor's 
framework  into  a  classification  problem.,  in 

which  we  try  to  emulate  their  reasoning  in 
order  to  find  hidden  properties  in  the  price 
data.  The  first  step  to  do  that  is  by  feature 
engineering. 

B. Dataset
We  used  the  traded  prices  for  the  Bovespa 
Stock  Index  Futures  Contract  ("mini-índice") 
from 2011 to 2015. The granularity was the 15 
minute price intervals, each data point with the 
values of OHLC (Open, High, Low, Close) for 
the time interval.

C. Feature Engineering
We  have  created  five  features  that  would 
represent  price  relationships  and  insert  the 
current price , at any time t, into a spatial price 
framework. The features are:

"F.H.4" (From High.4) - The linear (%) 
difference  between  the  current  price  and  the 
highest  price  recorded  in  a  four-day  time 
window. (A negative value).

"F.L.4" (From Low.4) - The linear (%) 
difference  between  the  current  price  and  the 
lowest  price  recorded  in  a  four-day  time 
window. (A positive value).

"F.H.0" (From High.0) - The linear (%) 
difference  between  the  current  price  and  the 
highest  price  recorded  in  the  current  trading 
session (intraday). (A negative value).

"F.L.0" (From Low.0) - The linear (%) 
difference  between  the  current  price  and  the 
lowest  price  recorded  in  the  current  trading 
session (intraday). (A positive value).

"F.OPEN.0"  (From  Open.0)  -  The 
linear (%) difference between the current price 
and  the  opening  price  of  the  current  trading 
session  (intraday).  (A  positive  or  negative 
value, depending on the current price).



Figure 1. Significant prices of the time 
series used in the features: 1. Highest 
price of the four-day time window, 2. 
the lowest price of the same window, 
3. the highest price of the trading 
session, 4. the lowest price of the 
session, 5. the opening price for the 
session and 6. the current price.

The  features  we  propose  try  to 
represent some of the reasoning investors use 
in order to decide whether to buy, sell, or do 
nothing  at  any  time,  given  the  price 
relationships. They can be seen in Figure 2.

Figure 2. Transforming the significant 
prices into features.

D. Support Vector Machine
Support Vector Machine (SVM) is a very well-
stablished  learning  algorithm  that  has  been 
successfully applied to a  number of  fields.  It 
can  be  used  both  for  regression  and 
classification,  however,  it's  mostly  used  as  a 
classification algorithm.

When modeling financial data, SVM is 
an  interesting  choice  due  to  the  following 
reasons: it doesn't make strong assumptions on 
the  data,  it  doesn't  require  a  de-trended time 
series, (to convert it into a stationary process), 
and  since  it's  not  an  empirical  error 
minimization  method,  it  should  be  robust 
enough to not overfit the data. 

In SVM, each data item is plotted as a 
point  in  an  n-dimensional  space.  (The   n 
corresponds to the number of features we are 
using in the model). The values of the features 
are the values of a particular coordinate.  The 
classification is  made by finding the decision 
boundary  (hyperplane)  that  best  differentiate 
the two (or more) classes.

Figure 3. The linear SVM hyperplane 
separating the two classes of  data 
points.

On  finding  the  best  hyper-parameters 
among C,  Gamma and  Kernel,  for  the  SVM  
algorithm, the hyper-parameters  were iterated 
over to arrive at the best combination for the 
given training data. We chose 4 test values for 
'c' and 3 test values for 'g'.

c = [10,100,1000,10000]
g = [1e-2,1e-1,1e0]

The  Kernel  function  chosen  was  the 
RBF Kernel  (Radial  Basis,  or  Gaussian),  for  
the  dataset  would  present  non-linear 
relationships.

Figure 4. The RBF (Gaussian) Kernel 
representation.



E. Return Function and Output Signal
The return function was set as the linear return 
(%) of the price from the actual time t (which 
is the time for the "current" price at the series, 
in  each data  point)  until  60 minutes  into  the 
"future".  In  other  words,  if  we  bought  the 
futures contract at the time stamp, for example, 
of   09:45,  our  "investment"  would  last  until 
10:45, with a 60 minutes duration. Our return 
would  be  the  %  difference  between  the  end 
price and the start price. This is a very short-
term approach for investing and it's called day 
trading, by the investors.

The return was calculated for the whole 
series,  and  in  the  training  process,  the 
algorithm would classify the returns into three 
categories:  equal  or  above  the  66  quantile, 
between the 33 and 66 quantile, and, equal or 
below the 33 quantile.

The algorithm was trained to generate 
the following output signals: 

+1,  or  a  "buy"  signal  (in  trading 
parlance,  to  go  "long"),  if  the  classification 
indicated the return would be equal or above 
the 66 quantile.

0,  or  a  "do  nothing"  signal,  if  the 
classification indicated the return would be in 
between the 33 quantile and the 66 quantile.

-1,  or  a  "sell"  signal  (in  trading 
parlance,  to  go  "short"),  if  the  classification 
indicated the return would be equal or below 
the 33 quantile.

F. Data Split and Cross-Validation 
The dataset was split in two blocks: 80 percent 
for training (from 2011 to 2014) and 20 percent 
for  testing  (from  2014  to  2015,  comprising 
eight and a half months).

A  k-fold  Cross-Validation  technique 
was used in the training set, with k=7. 

IV. EVALUATION
The model generated 56% prediction success, 
and  the  simulated  financial  return  (minus 
transaction costs)  amounted to  a  170% gain, 
during the testing period. 

For  the  same  period,  the  Trivial 
Strategy (to buy if the last data point was also 
classified as a buy signal, to sell if the last data 
point was classified as a sell signal) generated a 
-39% return, and the Buy-and-hold strategy (in 
which we simply buy at  the  start  of  the  test 
period  and  sell  at  the  end  of  it)  had  a  -9% 
return.

Figure 5. Results.

The return  as  an  equity  curve  can  be 
compared to the actual price series:

Figure 6. Return plotted against the 
time series.

V. CONCLUSION AND FUTURE 
WORK
Despite the non-stationarity of the time series, 
the model performed a successful classification 
of  buying  and  selling  opportunities,  which 
were applied to  the test  data  with acceptable 
accuracy  (from  the  investment  practitioner's 
point of view) and excellent % financial return, 

Model Trivial 
Strategy

Buy-and-
hold

Accuracy  56% 48% N.A.

Return 170% -39% -9%



(+170%), that was discounted for slippage and 
trading costs in each "transaction".

The  Feature  Engineering  was  key  in 
this process, as the feature were able:

a. To model price behavior according to 
an investment practitioner's point of view;

b.  To  maintain  the  time  series 
properties while allowing for Cross-Validation; 

c.  To  capture  significant  price 
relationships that were instrument for the SVM 
classification and predictions.

The Support Vector Machine algorithm 
was key in the way of learning the non-linear 
relationships  of  the  dataset  and  accurately 
classifying and predicting.

Future  work  will  evolve  this  model 
with  the  addition  of  new  features,  hyper-
parameter  tuning  and  the  addition  of  an 
exogenous  time  series  in  order  to  turn  the 
model into a multivariate analysis model.
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