
Financial Time Series Analysis and Prediction With Feature
Engineering and Support Vector Machines

Newton Linchen1,

1 Department of Computer Science, Federal University of Rio Grande do Sul (UFRGS)
contato@linchen.com.br

Abstract - Time series analysis and
prediction has been treated as a regression
problem, specially in the field of
Econometrics. In order to fit a regression
model, the financial time series must be
converted from a non-stationary process into
a stationary process. We believe this method
removes important data relationships and we
propose a method for time series analysis and
prediction using a classification algorithm
(Support Vector Machine) and a new set of
time series features. We evaluate this model
using the Bovespa Index Futures Contract
(Ibovespa Futuro), by making short-term
predictions in a simulated environment.

Keywords - Algorithmic trading (algo-
trading), Support Vector Machines;
classification; prediction; stock index futures;
time series.

I. INTRODUCTION
Time series, including those of financial data,
are regarded to have as features: Trend,
Seasonality, Cycles and Serial Dependence. In
order to make predictions about time series in
the future, practitioners rely mostly on
regression models, and it's a requirement that
some features must be transformed to fit those
models.

In particular, the Trend feature must be
removed, and the "de-trended" time series is
now converted from a non-stationary process
into a stationary one. This method is applied
because regression modeling would lead to
spurious correlations and predictions, if the
time series would have Trends.

However, we believe that time series
contains numerous intrinsic and non-linear
relationships, and to remove any of it's features

a priori, in order to fit the model requirements,
would lead to a data loss which would make
difficult if not impossible to make accurate and
useful predictions.

In this work, we propose a different
way to model, analyze and predict financial
time series, using it's raw inputs and not
removing any features a priori. To achieve this
prediction task, we propose new features which
capture spatial price relationships, and use a
classification algorithm, Support Vector
Machine, to learn non-linear relationships in
the data and to make predictions.

The remainder of this paper is
structured as follows: Section II reviews
related work, i.e., cases in which the Support
Vector Machine algorithm was applied to
classify and predict financial time series.
Section III deals with the implementation of
our intuition in a classification model. Section
IV evaluates the findings and results. Section V
is dedicated to Conclusion and future work.

II. RELATED WORK
We have encountered few reports of Support
Vector Machines in the field of financial
trading. The granularity of the datasets were
daily data points (daily close prices) in every
case. The markets covered by these studies
were stocks and index futures contracts from
the U.S. market, the German market and the
French market.

III. IMPLEMENTATION
In order to assess the meaning and the merit of
our model, we should understand the intuition
behind it. After that, we will demonstrate the

feature engineering and the classification
algorithm.

A. Intuition
The financial time series of securities or futures
contract prices are an output (or result) of a
decision-making process carried out by
investors, which make the decisions to buy, sell
or do nothing, during a continuous auction at
the Stock or Futures Exchange trading session.

So, the first element of our intuition is
that prices are not "entities" or "elements", nor
some "random phenomena", disconnected from
real world decision making and financial
consequences. Prices are real representations of
decision processes that account for massive
capital allocation.

In a financial times series, prices are a
human-driven phenomena, and therefore, any
analysis of price series should account for the
behavior (or psychology) of the decision-
makers (investors). How do we do that?

When deciding whether to buy, sell or
do nothing when it comes to a security or
futures contract, investors usually rely on the
prices themselves and apply to those prices
whatever proprietary modeling they have at
their disposal, in order to assess the viability of
a trading decision to buy or sell.

In other hand, the practitioners of time
series modeling and prediction (usually
Econometricians) argue that time series as they
are (with Trend, Seasonality, and other inherent
features) are unfeasible to model. They propose
various transformations, in order to fit the data
into their regression-driven models.

The investor, however, rarely (if ever)
de-trends a price series, and therefore doesn't
transform it in a stationary process before
analyzing it and taking action (to buy or sell).
They take price at face value, and analyze it by
measuring it's path (uptrend, downtrend), and
it's relative position in an specific time window.

As every investor has it's preferences,
biases and trading models, it's not in the scope
of this work to generalize a prediction model
that would explain all price behavior. Instead,
we are trying to model the investor's
framework into a classification problem., in

which we try to emulate their reasoning in
order to find hidden properties in the price
data. The first step to do that is by feature
engineering.

B. Dataset
We used the traded prices for the Bovespa
Stock Index Futures Contract ("mini-índice")
from 2011 to 2015. The granularity was the 15
minute price intervals, each data point with the
values of OHLC (Open, High, Low, Close) for
the time interval.

C. Feature Engineering
We have created five features that would
represent price relationships and insert the
current price , at any time t, into a spatial price
framework. The features are:

"F.H.4" (From High.4) - The linear (%)
difference between the current price and the
highest price recorded in a four-day time
window. (A negative value).

"F.L.4" (From Low.4) - The linear (%)
difference between the current price and the
lowest price recorded in a four-day time
window. (A positive value).

"F.H.0" (From High.0) - The linear (%)
difference between the current price and the
highest price recorded in the current trading
session (intraday). (A negative value).

"F.L.0" (From Low.0) - The linear (%)
difference between the current price and the
lowest price recorded in the current trading
session (intraday). (A positive value).

"F.OPEN.0" (From Open.0) - The
linear (%) difference between the current price
and the opening price of the current trading
session (intraday). (A positive or negative
value, depending on the current price).

Figure 1. Significant prices of the time
series used in the features: 1. Highest
price of the four-day time window, 2.
the lowest price of the same window,
3. the highest price of the trading
session, 4. the lowest price of the
session, 5. the opening price for the
session and 6. the current price.

The features we propose try to
represent some of the reasoning investors use
in order to decide whether to buy, sell, or do
nothing at any time, given the price
relationships. They can be seen in Figure 2.

Figure 2. Transforming the significant
prices into features.

D. Support Vector Machine
Support Vector Machine (SVM) is a very well-
stablished learning algorithm that has been
successfully applied to a number of fields. It
can be used both for regression and
classification, however, it's mostly used as a
classification algorithm.

When modeling financial data, SVM is
an interesting choice due to the following
reasons: it doesn't make strong assumptions on
the data, it doesn't require a de-trended time
series, (to convert it into a stationary process),
and since it's not an empirical error
minimization method, it should be robust
enough to not overfit the data.

In SVM, each data item is plotted as a
point in an n-dimensional space. (The n
corresponds to the number of features we are
using in the model). The values of the features
are the values of a particular coordinate. The
classification is made by finding the decision
boundary (hyperplane) that best differentiate
the two (or more) classes.

Figure 3. The linear SVM hyperplane
separating the two classes of data
points.

On finding the best hyper-parameters
among C, Gamma and Kernel, for the SVM
algorithm, the hyper-parameters were iterated
over to arrive at the best combination for the
given training data. We chose 4 test values for
'c' and 3 test values for 'g'.

c = [10,100,1000,10000]
g = [1e-2,1e-1,1e0]

The Kernel function chosen was the
RBF Kernel (Radial Basis, or Gaussian), for
the dataset would present non-linear
relationships.

Figure 4. The RBF (Gaussian) Kernel
representation.

E. Return Function and Output Signal
The return function was set as the linear return
(%) of the price from the actual time t (which
is the time for the "current" price at the series,
in each data point) until 60 minutes into the
"future". In other words, if we bought the
futures contract at the time stamp, for example,
of 09:45, our "investment" would last until
10:45, with a 60 minutes duration. Our return
would be the % difference between the end
price and the start price. This is a very short-
term approach for investing and it's called day
trading, by the investors.

The return was calculated for the whole
series, and in the training process, the
algorithm would classify the returns into three
categories: equal or above the 66 quantile,
between the 33 and 66 quantile, and, equal or
below the 33 quantile.

The algorithm was trained to generate
the following output signals:

+1, or a "buy" signal (in trading
parlance, to go "long"), if the classification
indicated the return would be equal or above
the 66 quantile.

0, or a "do nothing" signal, if the
classification indicated the return would be in
between the 33 quantile and the 66 quantile.

-1, or a "sell" signal (in trading
parlance, to go "short"), if the classification
indicated the return would be equal or below
the 33 quantile.

F. Data Split and Cross-Validation
The dataset was split in two blocks: 80 percent
for training (from 2011 to 2014) and 20 percent
for testing (from 2014 to 2015, comprising
eight and a half months).

A k-fold Cross-Validation technique
was used in the training set, with k=7.

IV. EVALUATION
The model generated 56% prediction success,
and the simulated financial return (minus
transaction costs) amounted to a 170% gain,
during the testing period.

For the same period, the Trivial
Strategy (to buy if the last data point was also
classified as a buy signal, to sell if the last data
point was classified as a sell signal) generated a
-39% return, and the Buy-and-hold strategy (in
which we simply buy at the start of the test
period and sell at the end of it) had a -9%
return.

Figure 5. Results.

The return as an equity curve can be
compared to the actual price series:

Figure 6. Return plotted against the
time series.

V. CONCLUSION AND FUTURE
WORK
Despite the non-stationarity of the time series,
the model performed a successful classification
of buying and selling opportunities, which
were applied to the test data with acceptable
accuracy (from the investment practitioner's
point of view) and excellent % financial return,

Model Trivial
Strategy

Buy-and-
hold

Accuracy 56% 48% N.A.

Return 170% -39% -9%

(+170%), that was discounted for slippage and
trading costs in each "transaction".

The Feature Engineering was key in
this process, as the feature were able:

a. To model price behavior according to
an investment practitioner's point of view;

b. To maintain the time series
properties while allowing for Cross-Validation;

c. To capture significant price
relationships that were instrument for the SVM
classification and predictions.

The Support Vector Machine algorithm
was key in the way of learning the non-linear
relationships of the dataset and accurately
classifying and predicting.

Future work will evolve this model
with the addition of new features, hyper-
parameter tuning and the addition of an
exogenous time series in order to turn the
model into a multivariate analysis model.

REFERENCES

Cao, L., and Tay, F. (2001) “Financial
Forecasting Using Support Vector
Machines”, Neural Computing &
Applications. Springer-Verlag London
Limited.

Cao, L. and Tay, F. (2002) “Modified support
vector machines in financial time series
forecasting”. Neurocomputing. Elsevier
Science B.V.

Cao, L. and Tay, F. (2003) “Support Vector
Machine With Adaptive Parameters in
Financial Time Series Forecasting”. IEEE
Transactions on Neural Networks, Vol.14,
N.º 6.

King, C., Vandrot, C. and Weng, J. (2009) “A
SVM Approach To Stock Trading”.

 Madge, S. (2015) “Predicting Stock Price
Direction using Support Vector Machines”.
Independent Work Report Spring 2015.

